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Abstract. We point out the possibility of having a roton-type excitation spectrum in a quasi-1D
Bose-Einstein condensate with dipole-dipole interactions. Normally such a system is quite unstable due
to the attractive portion of the dipolar interaction. However, by reversing the sign of the dipolar inter-
action using either a rotating magnetic field or a laser with circular polarization, a stable cigar-shaped
configuration can be achieved whose spectrum contains a ‘roton’ minimum analogous to that found in
helium II. Dipolar gases also offer the exciting prospect of tuning the depth of this ‘roton’ minimum by
directly controlling the interparticle interaction strength. When the minimum touches the zero-energy axis
the system is once again unstable, possibly to the formation of a density wave.

PACS. 03.75.Hh Static properties of condensates; thermodynamical, statistical and structural properties.
– 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow –
71.45.Lr Charge-density-wave systems

1 Introduction

Ultra-cold gases of atoms which interact with long-range
anisotropic dipole-dipole interactions have been the sub-
ject of a number of theoretical analyses over the past few
years [1–10]. The very recent advent of Bose-Einstein con-
densation of molecules [11] has renewed interest in the
investigation of quantum gases with dipolar interactions
since molecules can potentially possess large dipole mo-
ments. One of the novel properties that has been pre-
dicted for gaseous Bose-Einstein condensates (BECs) with
dipole-dipole interactions is a ‘roton’ minimum in the ex-
citation spectrum [12,13], a feature which is absent in the
usual case of repulsive short-range s-wave interactions,
and seems to originate in the long-range and partially at-
tractive nature of dipolar interactions.

The ‘roton’ minimum can be interpreted with the help
of Feynman’s formula for the dispersion relation for exci-
tations of energy E and momentum �k of a Bose liquid [14]

E(k) =
�

2k2

2mS(k)
(1)

where m is the atomic mass. This remarkable formula re-
lates the excitation spectrum to the two-particle corre-
lation properties as encapsulated in the static structure
factor S(k), which is the Fourier transform of the pair
correlation function. A peak in S(k) due to strong two-
particle correlations can lead to a minimum in the energy
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spectrum. The most famous example of a roton minimum
(and the system for which the name was first coined, by
Landau) is helium II where the roton minimum occurs
at wavelengths coinciding with the average interparticle
separation. The roton minimum in helium II has often
been regarded as indicating that the superfluid is very
close to crystallization [15–17] since the ordering of atoms
on a crystal lattice would lead to a corresponding peak
in S(k). However, many questions concerning this super-
fluid to density-wave transition remain difficult to answer,
essentially because liquid helium is a strongly correlated
system. Our aim in this paper is to explore an analogous
‘roton’ spectrum in a quasi-1D BEC with dipole-dipole
interactions. The tunability of the various parameters (in-
teraction strength, density, effective dimensionality, etc.)
controlling these relatively simple quantum gases gives the
exciting possibility of varying the depth of the roton mini-
mum and hence explore the onset of this zero-temperature
phase transition.

2 Dipole-dipole interactions
in a Bose-Einstein condensate

The long-range part of the interaction between two dipoles
separated by r, and aligned by an external field along a
unit vector ê, is given by

Udd(r) =
Cdd

4π
êiêj

(δij − 3r̂ir̂j)
r3

. (2)
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Dipoles induced by an electric field E = Eê have a cou-
pling Cdd = E2α2/ε0, where α is the static polarizabil-
ity, and ε0 the permittivity of free space. For atoms with
a magnetic dipole moment dm aligned by a magnetic
field B = Bê, one has Cdd = µ0d

2
m, where µ0 is the

permeability of free space. The isotropic short-range part
of the interatomic interactions is modelled by a pseudo-
potential, Us(r) = (4πas�

2/m)δ(r) ≡ gδ(r), where g in-
corporates the quantum aspects of low-energy scattering
via the s-wave scattering length, as. In order to apply
Bogoliubov (perturbation) theory to a BEC one gener-
ally needs to use such an effective- or pseudo-potential
rather than the bare interaction [19]. In what follows
we shall assume, however, that the dipole-dipole interac-
tion can be treated within the Born approximation, which
corresponds to the Fourier transform of the bare poten-
tial (2). The Born approximation has been shown by Yi
and You [1] to work reasonably well for the long-range
dipole-dipole interaction, but see Derevianko’s work [6]
for corrections, which can be substantial [7].

The basic quantity that then enters the Bogoliubov
theory is the Fourier transform of the total effective inter-
action, Ũtot(k) =

∫
d3r exp[−ik · r]{gδ(r) + Udd(r)},

Ũtot(k) = g
[

1 + εdd êiêj

(

3k̂ik̂j − δij

)]

(3)

where εdd is a dimensionless measure of the strength of
the dipolar interactions relative to the s-wave scattering

εdd ≡ Cdd

3g
. (4)

The definition includes a factor of 3 because for a homo-
geneous system (no confining trap) one finds instabilities
when εdd ≥ 1 [2,5,10]. This can be seen directly from the
Bogoliubov dispersion for phonon-like density perturba-
tions in a homogeneous dipolar BEC [2]

EB =

√
(

�2k2

2m

)2

+ 2gn {1 + εdd (3 cos2 θ − 1)} �2k2

2m
(5)

where n is the density. This dispersion relation (5) can be-
come imaginary when εdd > 1, indicating an instability.
The interactions enter the dispersion in the second term
under the square root via the effective potential (3). The
dispersion (5) relation has an angular dependence (θ is
the angle between the momentum of the phonon and the
external polarizing field) which further illustrates the rich-
ness of dipolar systems in comparison to the non-dipolar
case.

Santos et al. [13] considered the case of a quasi-2D
pancake-shaped BEC, where the dipoles are aligned (by
an external static field) along the symmetry axis of the
trap. They predicted that the analogous expression to (5)
gives a roton minimum in the excitation spectrum. In
this paper, however, we want to see if a roton minimum
can be achieved in the quasi-1D case where the conden-
sate is cigar shaped, being tightly confined in the ra-
dial (x − y) plane, say, and very elongated along the ax-
ial (z) direction. At first sight this seems unlikely because

the anisotropy of the dipole-dipole interaction means that
the quasi-1D and -2D cases are very different. Two dipoles
lying side-by-side in the radial plane are repulsive, whilst
two lying end-to-end along the axial direction are attrac-
tive so, broadly speaking, a pancake shaped BEC tends to
be more stable since the mean-field energy is more posi-
tive (repulsive) than that of a cigar-shaped BEC. Indeed,
an infinite quasi-1D BEC with only dipole-dipole inter-
actions (no repulsive s-wave short range interactions) is
unstable to density perturbations, as we shall see. There-
fore we shall employ a special trick and reverse the sign of
the dipole-dipole interaction (see also [5]). Two methods
for achieving the reversed dipole-dipole interaction will be
reviewed in the next section. With the sign of the dipole-
dipole interactions reversed, two dipoles lying end-to-end
along the axial direction are now repulsive and in this way
an infinite quasi-1D dipolar BEC can be stabilized some-
what against collapse induced by density perturbations.

In our previous work on the possibility of a roton spec-
trum in a BEC [12] we took the case of laser-induced
dipole-dipole interactions [18], which on top of the static
interactions of equation (2), also have a very long-range
component (1/r2, or even 1/r, depending on the polar-
ization direction) arising from retardation effects due to
the finite wavelength of the laser radiation. In principle
this is a very general scheme since one can benefit from
the large polarizability of atoms/molecules close to an
electronic transition. The disadvantage of laser-induced
dipole-dipole interactions, in atomic systems at least, is
the unavoidable presence of spontaneous emission which
heats the sample. In molecular systems one may be able
to circumvent spontaneous emission problems somewhat
by using transitions in the infra-red or even microwave
regions where spontaneous emission rates are low and
the long wavelength of the radiation allows one to have
many particles in an ‘interaction volume’ (given by λ3

laser).
In [20] we discussed how a BEC with light-induced dipole-
dipole interactions is unstable to the formation of a den-
sity wave. The periodicity of the modulation is determined
by the wavelength of the laser light and in one interpre-
tation can be understood in terms of the back-scattered
light interfering with the incident light to form an optical
grating which the atoms then minimize their energy in by
trying to sit predominantly in the wells. In this paper we
are interested in the case of static dipole-dipole interac-
tions. Although at first sight there are many similarities
between the two cases, in the light-induced case the opti-
cal wavelength provides the fundamental (classical) scale
in the problem whereas here the parameters we must form
a length scale from are Cdd, n, m and �.

3 Reversing the sign of the dipole-dipole
interaction

(i) In the case of magnetic dipoles the sign of the dipole-
dipole interaction (2) can be reversed by rapidly rotating
a component of the external magnetic field in the radial
plane [5], similarly to a well-known technique from solid
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state NMR. The magnetic field should have the form

B(t) = B {cosφẑ + sin φ [cos (Ωt) x̂ + sin (Ωt) ŷ]} (6)

which is a combination of a static magnetic field di-
rected along z, and a field rotating at frequency Ω in
the perpendicular radial plane. The frequency should be
such that the dipoles practically do not move during the
time Ω−1, but their moments adiabatically follow the
external field B(t). This corresponds to the condition
ωLarmor � Ω � ωr, ωz, where ωr, ωz are the radial and
axial trapping frequencies, respectively. Under these con-
ditions the particles experience a time-averaged interac-
tion whose form is exactly the same as equation (2) except
for being multiplied by

(
3 cos2 φ − 1

)
/2. By varying the

angle φ this factor can be continuously changed between
−1/2 to 1, giving the possibility to reverse the sign of the
interaction. At the so-called ‘magic angle’ of φM = 54.7◦
the dipolar interaction averages to zero. This technique
can be adapted to the case of heteronuclear molecules po-
larized by a rotating electric field. (ii) For dipoles induced
by the electric field of a very long wavelength laser prop-
agating along the z-direction, then one obtains a reversed
dipolar interaction when the laser is circularly polarized.
In the static limit the laser induced dipole-dipole interac-
tion gives

Cdd = Iα2/(cε20) (7)

where I is the laser intensity and c is the speed of light.
For a laser with wavevector q = ẑω/c, then application
of the identity ê

∗(±)
i (q)ê(±)

j (q) = 1
2 [(δij − q̂iq̂j) ± iεijk q̂k],

where +(−) corresponds to left (right) circular polariza-
tions, leads to the interaction

U circ
dd (r) = −1

2
Iα2(0)
4πcε20

(
1 − 3 cos2 θ

)

r3
(8)

where θ is angle the interparticle separation vector r makes
with the z-axis. We see that the sign of the interaction has
been reversed and multiplied by one half, corresponding
to the maximal change possible in the magnetic case. In
order to keep the notation as simple as possible, whenever
reversed dipolar interactions are used in the rest of this
paper Cdd will be taken to include the multiplying pre-
factors (such as 1/2).

4 Quasi-1D ansatz

The dipole-dipole energy functional of the gas is given by

Hdd =
1
2

∫ ∫

d3r d3r′ n(r)Udd(r − r′)n(r′) (9)

=
1
2

∫
d3k

(2π)3
ñ(k) Ũdd(k) ñ(−k) (10)

where n(r) and ñ(k) are the number density and its
Fourier transform (F.T.), respectively. The F.T. of the
dipole-dipole potential is given in (3).
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Fig. 1. Solid curve: effective 1D dipolar potential Ũz
dd(v), in

momentum space in units of Cdd/(2πw2
x). Dot-dashed curve: a

simple approximation (as given in Eq. (16)).

Assuming an harmonic radial trapping Vtrap =
(1/2)mω2

x(x2 + y2) with �ωx larger or equal to the mean-
field energy, we make a Gaussian ansatz for the radial part
of the number density profile

n(r) = (πw2
x)−1nz(z) exp

[−(x2 + y2)/w2
x

]
(11)

ñ(k) = ñz(kz) exp[−(k2
x + k2

y)w2
x/4] (12)

where wx is the characteristic radial width and N is the
total number of atoms in the sample. The axial density
profile nz(z) is normalized to N , and its F.T. is ñz(kz).
Upon inserting the Gaussian ansatz into the dipolar en-
ergy functional, and taking the polarization direction of
the dipoles to be in the axial (z) direction the Hdd re-
duces to

Hdd =
1
2

∫ ∫

dz dz′ nz(z)Uz
dd(z − z′)nz(z′) (13)

=
1
2

∫
dkz

2π
ñz(kz)ñz(−kz)Ũz

dd(kz) (14)

which defines Ũz
dd(kz) as the F.T. of the effective one-

dimensional dipole-dipole potential. One finds that

Ũz
dd(kz) =

Cdd

2πw2
x

(
k2

zw2
x

2
exp[k2

zw2
x/2] E1[k2

zw2
x/2] − 1

3

)

(15)
where E1[x] =

∫ ∞
x

dt exp[−t]/t is the exponential inte-
gral [21]. In an analogous fashion, the effective 1D s-wave
contact interaction in momentum space is given by Ũz

s =
2�

2as/(mw2
x).

In order to give a qualitative impression of what the
effective 1D potential looks like in coordinate space we
note that an analytically simple approximation to Ũz

dd is
given by (see Fig. 1)

Ũz
dd(kz) ≈ Cdd

2πw2
x

(
2
3
− 1

k2
zw2

x/2 + 1

)

. (16)

Upon transforming back into coordinate space, the
1/(k2

zw
2
x/2 + 1) term gives an exponential contribution
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to the effective coordinate-space 1D potential Uz
tot(z) =

∫
(dkz/2π) exp [ikzz] Ũz

tot(kz), i.e.

Uz
tot(z) =

g

2πw2
x

(

{2εdd + 1} δ(z)

− 3εdd√
2wx

exp
[

−√
2z/wr

])

. (17)

5 Bogoliubov excitation spectrum
for a quasi-1D dipolar BEC

The Bogoliubov dispersion relation for excitations in a
homogeneous nearly ideal BEC is

E2
B = c2p2 + (p2/2m)2 (18)

where for a quasi-1D system, with a Gaussian radial profile
of peak density n(0), one has c2 = πn(0)w2

xŨz
tot/m. For

the linear parts of the spectrum c plays the role of the
speed of sound. It is useful to write the Bogoliubov relation
in terms of the following dimensionless quantities

k̄z =
kzwx√

2
(19)

µ̄ =
gn(0)

�2/(mw2
x)

(20)

ĒB =
EB

�2/(mw2
x)

. (21)

k̄z is the wavenumber scaled by the inverse radial size,
wx, of the condensate radial wave function ansatz. The
Bogoliubov dispersion relation becomes

Ē2
B = µ̄

(

3εdd

{

k̄2
z exp[k̄2

z ]E1[k̄2
z ] − 1

3

}

+ 1
)

k̄2
z + k̄4

z .

(22)
When εdd > 1 one finds that the Bogoliubov energy be-
comes imaginary for a range of momenta, see Figure 2,
indicating an instability due to density perturbations. If
there are no repulsive s-wave interactions (εdd → ∞) to
counterbalance the attractive portion of the dipolar in-
teractions then there is an instability even for vanish-
ingly small dipole-dipole coupling strength in this infinite
1D case. In an actual experiment the trapping potential
along the axial direction can stabilize the BEC somewhat,
in an analogous fashion to the case of a negative s-wave
scattering length [22].

However, as pointed out earlier, the stability proper-
ties of the condensate can be dramatically changed by re-
versing the sign of the dipolar interaction. Figure 3 shows
the Bogoliubov excitation spectrum in the case of nega-
tive εdd. In contrast to liquid helium, where one only has
control over macroscopic thermodynamic variables such
as temperature and pressure, in an atomic or molecular
BEC considerable control can be exerted over microscopic
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Fig. 2. Bogoliubov dispersion relation for axial excitations
in a quasi-1D BEC with µ̄ = 0.1. Dashed curve: s-wave con-
tact interactions only (εdd = 0). Solid curve: dipole-dipole
plus s-wave contact interactions, εdd = 2. For k̄z < 0.19 the
Bogoliubov energy for the dipolar case is imaginary. In general,
whenever εdd > 1 the spectrum is imaginary at long wave-
lengths, indicating an instability to density perturbations.
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Fig. 3. ‘Roton’ minimum in the Bogoliubov dispersion relation
for axial excitations in a quasi-1D dipolar BEC with µ̄ = 0.1.
Dashed curve: s-wave contact interactions only (εdd = 0). Solid
curve: reversed dipole-dipole plus s-wave contact interactions,
εdd = −13.

quantities such as the interparticle interactions. A well-
known example is tuning the s-wave scattering length us-
ing a Feshbach resonance [23]. Similarly, in a system of
atoms or molecules with a permanent magnetic or electric
dipole, one can envisage an experiment at a fixed value
of µ̄ and adiabatically changing the dispersion relation by
adjusting εdd via the angle of the rotating external field.
Alternatively, for dipoles induced by an electric field one
can imagine slowly changing the field strength. Within the
current model we find that as εdd is increased in magni-
tude below zero (made more negative), first an inflection
point appears in the dispersion relation and then a fully
fledged roton minimum as shown in Figure 3. As |εdd|
is increased yet further the roton minimum deepens and
eventually touches the zero-energy axis, at which point,
following the earlier discussion of helium, we might ex-
pect an instability towards a density-wave. The value of
the wavenumber when the roton touches the zero-energy
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Fig. 4. The critical value of 1/εdd(= 3g/Cdd) when the roton
minimum touches the zero-energy axis plotted as a function of
µ̄ = gn(0)/(�2/mw2

x) in an infinite quasi-1D dipolar BEC.

axis is found to be

(k̄crit
z )2 = − µ̄

2
(2εdd + 1)

− 1
2

√

µ̄2(2εdd + 1)2 + 4µ̄(εdd − 1). (23)

The particular values of the dimensionless chemical poten-
tial µ̄, which is representative of the density, and the dipo-
lar interaction strength, as represented by εdd, at which
this instability occurs obey the transcendental equation

3µ̄εdd

(
k̄crit

z

)2
exp

[
(k̄crit

z )2
]
E1

[
(k̄crit

z )2
]

=

µ̄(εdd − 1) − (
k̄crit

z

)2
. (24)

By substituting equation (23) into (24), one can numer-
ically obtain the relationship between εdd and µ̄ at the
instability. The results are shown in Figure 4.

In the case of pure dipolar interactions (no s-wave) the
point at which the roton touches the zero-energy axis can
be reduced to a single number

n(0)Cdd

�2/(mw2
r)

≈ −3.6. (25)

In this limiting case the wavelength associated with the
roton minimum is given by λroton =

√
3π�/

√
mn(0)Cdd,

which sets the scale for the density-wave that we expect
to form.

6 Effect of axial trapping upon the roton
instability

Up till now we have discussed the idealized case of an in-
finite quasi-1D cylindrical BEC. We now want to move
closer to the possible experimental situation where the
trap is in fact 3D, but is still assumed to be highly elon-
gated and have cylindrical symmetry. The ansatz for the
condensate density may now be taken as a 3D Gaussian

n(r) =
N

π3/2w2
xwz

exp
[−(x2 + y2)/w2

x − z2/w2
z

]
. (26)

Using this ansatz, the contribution of the dipole-dipole
interactions to the total energy is found to be given by
the expression [1,5,10]

Hdd = − N2Cdd

12π
√

2π

f(κ)
w2

xwz
(27)

where κ = wx/wz is the aspect ratio of the trapped BEC
and

f(κ) =
1 + 2κ2

1 − κ2
− 3κ2 tanh−1

√
1 − κ2

(1 − κ2)3/2
. (28)

Assuming that the large extension of the trap in the axial
direction means that the system is in the Thomas-Fermi
limit for that direction (i.e. the zero-point kinetic energy
due to the axial trapping can be ignored relative to the
trap potential and interaction energies — see [10] for a
discussion of the Thomas-Fermi limit for dipolar gases)
then the total energy functional, scaled by the transverse
trapping energy, is approximately

Htot

N�ωx
≈ 1

2

(

w̄2
x +

1
w̄2

x

)

+
λ

4
w̄2

z − η√
2π

(εdd − 1)
1

w̄2
xw̄z

(29)
where λ = ωz/ωx is the aspect ratio of the trap, w̄x =
wx/lx is radial size of the BEC scaled by the oscillator
length of the trap lx =

√
�/(mωx), and w̄z = wz/lz is

the corresponding axial quantity. The first terms in brack-
ets on the rhs are the radial energy due to the trap and
zero-point kinetic energy, respectively. The next term is
the axial trapping energy and the last term is the total
interaction energy, being the sum of the s-wave and dipo-
lar contributions. In order to obtain this simple expres-
sion for Htot we have expanded f(κ) for small κ and re-
tained only the first term. We have also used the quantity
η = Nas/lz which is a key interaction strength parameter
known from regular BECs with contact interactions [24]:
when η is large the system is in the Thomas-Fermi regime.

Minimising Htot with respect to variations of the con-
densate radii gives equations for the equilibrium values of
these quantities. One finds

λη2 (εdd − 1)2 =
π

2

(
w̄4

x − 1
)3

w̄2
x

(30)

2√
2π

η (εdd − 1)
1

w̄z
= 1 − w̄4

x. (31)

Solving these equations gives the condensate radii as a
function of the various parameters. Figure 5 illustrates the
dependence of the radius on the parameter combination
|η(εdd − 1)|√λ. From Figure 5 one sees that, all other
things being equal, the radial size increases as the dipolar
interaction strength is increased: the cigar becomes fatter.
It is useful to note that equations (30) and (31) allow us to
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Fig. 5. Dependence of the radial size wx of a cigar-shaped
dipolar condensate in a 3D trap upon the system parameters.

write the total energy functional and the actual chemical
potential of the BEC in the trap (defined as µ = [Hkin +
Htrap + 2Hs + 2Hdd]/N) solely in terms of the radius

Htot

N�ωx
=

5w̄4
x − 1

4w̄2
x

(32)

µ

N�ωx
=

7w̄4
x − 5

4w̄2
x

. (33)

The solutions of equations (30) and (31) minimise the to-
tal energy functional in the 2D parameter space spanned
by the radii w̄x and w̄z for particular fixed values of λ,
η and εdd. Providing the minimum is a global one they
correspond to the lowest energy solutions one can obtain
from scaling variations. Perturbations about these equi-
librium values should result in stable oscillations which
physically correspond to monopole and quadrupole shape
oscillations. If, for new values of λ, η and εdd, the min-
imum in this (w̄x, w̄z) parameter space becomes only a
local minimum, or a saddle, then the system is now ei-
ther only metastable, or unstable, respectively, to scal-
ing perturbations. The roton instability is in principle,
however, an independent type of instability due essen-
tially to local density perturbations (phonons) in the same
spirit as the instability we first noted in equation (5) for
a homogeneous system and developed in Section 5. for
an infinite cylinder. Local density perturbations are not
captured by the simple (w̄x, w̄z) parameter space and so
must in general be considered in addition to instabilities
arising from scaling perturbations. Scaling instabilities in
trapped dipolar gases have been extensively discussed be-
fore [1–3,5,10]. Our main purpose here is to highlight the
local density instability connected with the roton mini-
mum touching the zero energy axis.

We therefore now wish to calculate how the roton in-
stability point (defined by the roton minimum touching
the zero-energy axis) depends upon εdd and the value
of the chemical potential in a cigar-shaped 3D trap. In
Figure 4 we indicate how εdd depends on µ̄ at the insta-
bility. For the case of a 3D trap µ̄ is not the best quantity
to consider since it depends upon the density which is it-
self a non-trivial function of εdd via equations (30, 31). In
fact one can show

µ̄ =
gn(0)

�2/(mw2
r)

=
4√
π

η

w̄z
= 2

√
2

1 − w̄4
x

εdd − 1
. (34)
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Fig. 6. The critical value of 1/εdd when the roton minimum
touches the zero-energy axis plotted as a function of the chem-
ical potential µ in a very elongated 3D trap.

For the 3D trap we therefore prefer to illustrate the criti-
cal value of εdd in terms of the true chemical potential in
the trap µ, as given by equation (33). The result is shown
in Figure 6. In the limit that 1/εdd → 0 we have the case
of a purely dipolar BEC with no s-wave interactions. We
find that the limiting value of the chemical potential at
this point is µ/(N�ωx) = 1.043 and the corresponding
value of the condensate radius is w̄x = 1.093. These num-
bers should only be taken as a qualitative guide rather
than quantitatively accurate since the BEC is no longer
one dimensional when µ/(N�ωx) ≈ 1, and the effective 1D
potential approximation will begin to break down. In par-
ticular, one should include radial excitations in order to
give a consistent treatment. This is beyond the scope of
this largely illustrative paper, but for a pancake-shaped
dipolar BEC such a treatment can be found in [13]. Nev-
ertheless, the very simple treatment given here should give
the general picture of what to expect.

7 Conclusion and outlook

A infinite quasi-1D dipolar BEC gas would normally be
unstable to local density fluctuations if εdd > 1 on account
of the attractive nature of the dipolar interactions along
the axis of the trap. However, by reversing the sign of the
dipolar coupling using either a rotating polarizing field for
permanent dipoles [5], or a very long wavelength circu-
larly polarized laser beam for electrically induced dipoles,
one can obtain a stable quasi-1D system. This configura-
tion has the possibility of a ‘roton’ minimum in its long-
wavelength axial excitation spectrum.

This minimum is tunable via parameters such as the
dipolar interaction strength and the density. As is sus-
pected to be the case in helium II, we speculate that the
roton minimum could be the precursor of a transition to
a density wave. The tunability of dipolar gases means
that this phase transition could be explored experimen-
tally when quantum gases with significant dipole-dipole
interactions are realized. One of the important features of
the 1D system discussed in this paper is that the change
in the order parameter between a superfluid and a density
wave does not seem to involve any fundamental change of
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symmetry and so the phase transition could be a smooth
one of 2nd order. For a pancake or fully 3D system the
change in symmetry is more dramatic and these transi-
tions may not be smooth. We believe considerations such
as these make dipolar quantum gases very worthwhile sys-
tems to study.
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